AoU Integration Guide

Table of Contents

1. AoU Architecture
2. Integration Points
2.1. For Submitting Publications
2.2. For Searching Publications
2.3. For Developers
3. REST Web Services
3.1. Overview
3.1.1. URL Structure
3.1.2. CRUD Operations
3.1.3. HTTP Status Codes
3.1.4. Error Details
3.2. Collection
3.2.1. Structure
Data Section
Page Section
Links Section
3.2.2. Usage
To get a list of things
3.3. Instance
3.3.1. Structure
Links Section
3.3.2. Usage
To get a resource
To create a new resource
To update a resource
To delete a resource
3.4. Security
3.4.1. Authentication
3.4.2. Application Roles
4. Integration for Submitting Publications
5. Integration for Searching Publications
5.1. To export metadata with OAI-PMH
6. Annexes
6.1. Glossary
6.2. AoU Modules

© 00 00 0 00 O U1 U1 b b B W W W w N

e S e e ey
0 0 00 q NN o R R R W W WNDN R R O o o

AoU Solution v2.1.11, 2024-10-29

Archive ouverte

The current documentation is available in HTML or PDF.

AoU-IntegrationGuide.html
AoU-IntegrationGuide.pdf

Chapter 1. AoU Architecture

The solution architecture is open, flexible and modular so as to be scalable, sustainable, and to
facilitate its integration with other information systems. How such integrations can be performed

constitutes the topic of this document.

Chapter 2. Integration Points

2.1. For Submitting Publications

See the details in Integration for Submitting Publications section.

2.2. For Searching Publications

See the details in Integration for Searching Publications section.

2.3. For Developers

« All web services are detailed in API Documentation.

* The API are available in OpenApi v3 format. The definition is available in AoU API JSON file.

AoU-APIs.html
https://openapi.tools/
openapi/aou-api.json

Chapter 3. REST Web Services

3.1. Overview

The AoU APIs are RESTful web services based on the best practices. The implementation
corresponds to the third level of Leonard Richardson’s Maturity Model:

o
Glory of REST /

Level 3: Hypermedia Controls

Level 1: Resources
Level 0: The Swamp of POX

Source : (crummy.com, 2008)

More details about these concepts are available on the following links:

* https://spring.io/guides/tutorials/bookmarks/

* https://martinfowler.com/articles/richardsonMaturityModel.html

The data format of the web service is JSON,with HATEOAS & HAL support:

Resource

el | href

{ plain old JSON properties } |_| n kS

embedded resources

|

Source : (stateless.co, 2011)

3.1.1. URL Structure

The URL of each REST resource is constructed according to the following rule:

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://spring.io/guides/tutorials/bookmarks/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.json.org/
https://en.wikipedia.org/wiki/HATEOAS
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

http(s)://<root context>/<module>/<things>

Where:

http(s) is the protocol which can be secured depending on the installation configuration.
* <root context> is the root context of the application, defined in the configuration.

e <module> is the functional module (see AoU Architecture): the different module names are
detailed in the AoU Modules section in the Annexes.

<things> is the name of the REST resource: it must be a *noun in plural form*.

The naming convention, applied only for <things>, respects the camel case syntax, with a lower case
character for the first one.

(o . .
O There are some examples of root contexts in the demo environment
-

3.1.2. CRUD Operations

By default, for each REST resource, the CRUD actions are available like this:

HTTP verb CRUD action Collection Instance
POST Create 0 0
Used to create a new resource
GET Read 0 0
Used to retrieve a resource or resource list
PATCH Update No creation 0 0
Used to update an existing resource, including partial
updates
DELETE Delete 0 0

Used to delete an existing resource

o The HTTP verb for an action on a resource is POST:
http(s)://<root context>/<module>/<things>/<thingID>/<action>.

3.1.3. HTTP Status Codes

RESTful notes tries to adhere as closely as possible to standard HTTP and REST conventions in its
use of HTTP status codes.

Status code Usage
200 0K The request completed successfully
207 Created A new resource has been created successfully. The resource’s URI is

available from the response’s Location header

204 No Content An update to an existing resource has been applied successfully

https://en.wikipedia.org/wiki/Camel_case
https://sandbox.dlcm.ch
https://sandbox.dlcm.ch
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Status code Usage

400 Bad Request The request was malformed. The response body will include an error
providing further information

407 Unauthorized Authentication is required to access to this resource
403 Forbidden You are not allowed to access to this method for this resource
404 Not Found The requested resource did not exist

405 Method Not Allowed The requested method is not supported for this resource

https://en.wikipedia.org/wiki/List_of HTTP_status_codes

3.1.4. Error Details

{
"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",
“error": "Type of error",
"message": "Message to explain the issue",
“timeStamp": "DDD MMM YY hh:mm:ss CEST YYYY",
"statusCode": 400

}

Contains the malformed request information, which describes the problem on the request:

* The path field is the url of the resource concerned by the problem.

» The status field is the status of the request (always 'BAD_REQUEST" in this case).

* The error field is the error that occurs on the request.

* The message field is the message that details the problem.

* The timeStamp field is the time at which the error occurred.

» The statusCode field is the status code of the request (always '400' in this case) .
In the case in which a body object is provided, the validationErrors field is also added to the fields
above. The value of this field is an array that contains for each malformed field:

* The fieldName field that contains the name of the malformed field.

» The errorMessages field array that contains the list of errors in this field.

O Example of a deposit submission with a malformed body = {}
-

"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",

"error": "None",

"message": "Validation failed",

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

“timeStamp": "Fri May 17 11:39:15 CEST 2019",
"validationErrors": [

{
"fieldName": "title",
"errorMessages": [
"can't be null"
]
I
{
"fieldName": "description",
"errorMessages": [
"can't be null"
]
I
{
"fieldName": "organizationalUnitId",
"errorMessages": [
"can't be null"
]
}

1,
"statusCode": 400

(;) Example of a malformed deposit submission with no body
-

"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",

"error": "Required request body is missing: ...",
"message": "Request not readable",

"timeStamp": "Fri May 17 12:53:29 CEST 2019",
"statusCode": 400

(;) Example of a malformed deposit submission with a body = []
-

"path": "http(s)://<root context>/<module>/<things>",
"status": "BAD_REQUEST",

“error": "JSON parse error: ...",
"message": "Request not readable",
"timeStamp": "Fri May 17 13:04:39 CEST 2019",
"statusCode": 400

3.2. Collection

A collection of REST resources is a list of JSON objects. The list has its own structure, is paginated,
filterable and sortable.

The collection URL is:

http(s)://<root context>/<module>/<things>.

3.2.1. Structure

{
" data" : [
{ "object" : "#1" },
{ "object" : "#2" },
{ "object" : "#3" },
{ "object" : "#4" }

1,

"_page": {
"currentPage" : 0,
"sizePage" : 20,
“totalPages" : 1,
"totalltems" : 4

I

" links" : {

"self" : {
"href" : "URL of the collection"
Iy
"module" : {
"href" : "URL of the DLCM module"
}
}
}

Data Section

The Data section contains an array of JSON representations, corresponding to business objects (i.e.
things). The details of these objects can be found in the technical documentation (i.e. API
Documentation) provided with the DLCM solution.

Page Section

The Page section contains the pagination information, which describes the current position:

* The currentPage field is the page number of the current page: it starts at 0.

The sizePage field is the size of each page: the default is set to 20, the max value is 2000.

The totalPages field is the total number of pages for the current page size.

The totalltems field is the total number of objects for the current selection.

aou-APIs.html
aou-APIs.html

Links Section

The Links section contains the links corresponding to the current collection. This list is dynamic and
depends on the state of the collection:

* The selflink is the current URL: it is always present.

* The module link is the URL to access the current module.

* The next link is the URL to go to the next page, available only if it exists.

» The previous link is the URL to go to the previous page, available only if it exists.

* The lastCreated link is the URL to get the list sorted by creation date in descending order.

* The lastUpdated link is the URL to get the list sorted by last update date in descending order.

* Some other links could be available depending on the current resource: these links are detailed
in the API documentation of the resource.

(o
O Example of institution list
-

{
_data : [
{
resId : "7f9df7bb-5eab-4823-98a0-abb668731de5",
name : "UNIGE",
description : "Université de Genéve",

I
{
resId : "18284eb1-de@b-427e-9e8c-c541cb35e818",
name : "EPFL",
description : "Ecole Polytechnique Fédérale de Lausanne",
I
{

resId : "e8a9b74d-7b84-4958-be62-9b0b1d833360",
name : "ETH",
description : "ETH Zirich",
}
1,
_page : {
currentPage : 0,
sizePage : 20,
totalPages: 1,
totalltems: 4

Jg
_links: {
self : {
href : "http://localhost:16105/d1lcm/admin/institutions”
1
module : {
href : "http://localhost:16105/d1cm/admin"
Iy

lastCreated : {
href : "http://localhost:16105/d1lcm/admin/institutions?sort=creation.when,desc"
I
lastUpdated : {
href :
"http://localhost:16105/d1lcm/admin/institutions?sort=1astUpdate.when,desc"
}
}
}

3.2.2. Usage

To get a list of things

The different parameters can be used individually or together.

Request http(s)://<root context>/<module>/<things>
Verb GET
Parameter(s) Name Description
size=<page size> The page size
page=<page number> The current page number

<field name>=<field To apply a filter on a field if the field is

value> embedded in a sub structure, the field name
must be fully named with “” for each level:+
<sub structure name>.<field name>

sort=<field To sort a field

name>[, desc] By default, the sort is ascending. desc option
permits to have descending order.

Expected 200 Success
Return Code
Return Object JSON Collection object See Structure
O Examples
w

1. To filter by creation date:
http(s)://<root context>/<module>/<things>?sort=creation.when

2. To sort by most recent objects:
http(s)://<root context>/<module>/<things>?sort=creation.when,desc

3. To get page 10 composed of 5 elements:
http(s)://<root context>/<module>/<things>?page=10&size=5

3.3. Instance

The instance of REST resource is the instance of an object with its fields.

10

The instance URL is:

http(s)://<root context>/<module>/<things>/<thingID>.

3.3.1. Structure

{
"creation" : {
"when" : "Creation date & time",
"who" : "Creation user"
H
"lastUpdate" : {
"when" : "Last update date & time",
"who" : "Last update user"
I
"resId" : "Object ID",
"fields" : "Object fields...",
" Tinks" : {
"self" : {
"href" : "URL of the object"
b
"list" : {
"href" : "URL of the object collection”
Jr
"module" : {
"href" : "URL of the DLCM module"
Iy
"Other 1link" : {
"href" : "Others links of the object"
}
}
}

The field list elements are:

* The creation and lastUpdate fields, containing the information of the action:

o The when field is the date and the time, with milliseconds of the action (ex : 2018-03-
08T17:42:30.733+0100).

o The who field is the user id of the user who has done the action.
» The reslId field is the identifier of the object: it is a UUID.

» Some other fields complete the object description: these fields are detailed in the technical
documentation of the resource.

Links Section

The links section contains a list of links of the object:

* The selflink is the URL of the current object.

11

https://en.wikipedia.org/wiki/Universally_unique_identifier

* The list link is the URL pointing to the object collection.
* The module link is the URL to access the current module.

* Some other links could be available depending on the object: these links are detailed in the
technical documentation of the resource.

(o . . .
O Example of an institution
-

"creation" : {
"when" : "2018-03-08T17:42:30.733+0100",
"who" : "user id of user xxxxxx"

H

"lastUpdate" : {
"when" : "2018-03-08T17:42:30.733+0100",
"who" : "user id of user yyyyyyy"

b
"resId" : "7f9df7bb-5eab-4823-98a0-abb668731de5",

"name" : "UNIGE",

"description” : "Université de Geneve",
" 1inks" : {
"self" : {

"href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
9830-abb668731de5"

o
"list" @ {
"href" : "http://localhost:16105/d1lcm/admin/institutions”
¥
"module" : {
"href" : "http://localhost:16105/d1lcm/admin"
b
"people" : {

"href" : "http://localhost:16105/d1lcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/people”
),

"organizationalUnit" : {
"href" : "http://localhost:16105/dlcm/admin/institutions/7f9df7bb-5eab-4823-
98a0-abb668731de5/organizationelUnits"
}
}
¥

3.3.2. Usage

To get a resource

Request http(s)://<root context>/<module>/<things>/<thingID>

Verb GET

12

Parameter(s)

Expected
Return Code

Return Object

Name

None
200
404

JSON object

To create a new resource

Request
Verb

Parameter(s)

Expected
Return Code

Return Object

To update a resource

Description

Success
Not found

See Structure

http(s)://<root context>/<module>/<things>

POST

Name

JSON Object with
fields to set

201

JSON Object

The resource must already exist.

Request
Verb

Parameter(s)

Expected
Return Code

Return Object

To delete a resource

Request
Verb

Parameter(s)

Description

Object in JSON format. The fields and the
structure depend on the type: see API
Documentation

Created

See Structure

http(s)://<root context>/<module>/<things>/<thingID>

PATCH

Name

JSON Object with field
to update

200
304
404

JSON Object with
updated fields

Description

Object in JSON format. The fields and the
structure depend on its type: see API
Documentation

Modified
Not modified
Not found

See Structure

http(s)://<root context>/<module>/<things>/<thingID>

DELETE

Name

None

Description

13

aou-APIs.html
aou-APIs.html
aou-APIs.html
aou-APIs.html

Expected 200 Deleted

Return Code 404 Not found
410 Gone
Return Object String: 0OKI If success

3.4. Security

3.4.1. Authentication

All web services are secured and require authentication.

User authentication relies on Switch AAI which is a Single Sign-On (SSO), based on Shibboleth.
Access to Web services relies on OAuth 2.0 access delegation.

OAuth 2.0 is a protocol allowing third-party applications to grant limited access to an HTTP service,
either on behalf of a resource or by allowing the third-party application to obtain access on its own.
It uses the authorization code grant implementation.

o

- - - - - © o
DLCM - Application Security - Authorization Code type (O—- DLCM™=
0 © ©2019

Browser (Resource Owner) || AAI (Identity Provider I | DLCM-Client (Client I ‘ DLCM-Admin (Authorization Server || DLCM- Applicat-"ions" (Resource Server

| i | i i

! Request DLCM resource ! Y

1 I ¥,

:‘ Dc-_jiver Shibboleth page authentication

N

\
|
|

! . . N ‘. . !

! Gives Shibboleth authentication credentials !

| 1 \

Y
P

1
¢ Shibboleth authentication requeLt:

w
=
f=
g
o
E
g
E
[
=
2
o
g
=]
w
(]
v

1
i
i
i
i
i
1
1
1
1
'
i
Meeds: username, pas swordj !
T 1
1
1
i
i
i
i
i
1
1
1

Authorization Code Request

b
1

response_type=code[, scope, state]

1
1
!
:
i Meeds: client_id, redirect_uri, T
i
1
1
1
1
i

- - - Authorization Code B@S_QQ”_SS_U
T

Exchange Code for Access Token i
1

Needs: client_id, client_secret, redirect_uri,
grant_type=authorization_code, code

i¢ Access Token [+ Refresh TokerlLu

loop J i i

| i i

1 | Call DLCM resource with Access Token N
i i i 4
H H H Check Access token validity

i i i

; i i Give DLCM resource with Data

i i T

i ‘ i i i

| Browser (Resource Owner) | | AA (Identity Provider | | DLCM-Client (Client | ‘ DLCM-Admin (Authorization Server I | DLCM- Applicat-"ions" (Resource Server)

3.4.2. Application Roles

14

https://www.shibboleth.net/
https://tools.ietf.org/html/rfc6749

Application Roles

ADMIN

Manage global settings

(o]

°0O% DLCM®

(o] ©2019

* Functional features list

15

Chapter 4. Integration for Submitting
Publications

16

Chapter 5. Integration for Searching
Publications

5.1. To export metadata with OAI-PMH

The OAI-PMH provider of DLCM solution supports version 2.0 of the protocol for metadata
harvesting. The specifications are detailed on the Open Archives Initiative website.

Request http(s)://<root context>/access/oai-provider/oai
Verb GET or POST with content-type application/x-www-form-urlencoded
Parameter(s) Name Description

OAI parameters See OAI-PMH specifications.

smartView=dlem_oaiZ.xs Qptional parameter to display OAI XML in a

1 structured way, with XML transformation to
generate HTML.
Expected 200 Success
Return Code 503 Service unavailable, i.e. the Data Management
module is not running
Return OAI-PMH XML data OAI-PMH XML data. See OAI-PMH specifications
Object
Roles Public (see [roles])

17

https://www.openarchives.org/OAI/openarchivesprotocol.html
https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages
https://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages

Chapter 6. Annexes

6.1. Glossary

Acronym Description Source
CRUD Create Read Update Delete Software
HAL Hypertext Application Language Software
HATEOAS Hypermedia As The Engine Of Application State Software
JSON JavaScript Object Notation Software
REST REpresentational State Transfer Software
SOA Service Oriented Architecture Software

6.2. AoU Modules

Module Description REST Name
Access Access module to access to publication access
Admin Administration module to manage general admin

settings

18

	AoU Integration Guide
	Table of Contents
	Chapter 1. AoU Architecture
	Chapter 2. Integration Points
	2.1. For Submitting Publications
	2.2. For Searching Publications
	2.3. For Developers

	Chapter 3. REST Web Services
	3.1. Overview
	3.1.1. URL Structure
	3.1.2. CRUD Operations
	3.1.3. HTTP Status Codes
	3.1.4. Error Details

	3.2. Collection
	3.2.1. Structure
	Data Section
	Page Section
	Links Section

	3.2.2. Usage
	To get a list of things

	3.3. Instance
	3.3.1. Structure
	Links Section

	3.3.2. Usage
	To get a resource
	To create a new resource
	To update a resource
	To delete a resource

	3.4. Security
	3.4.1. Authentication
	3.4.2. Application Roles

	Chapter 4. Integration for Submitting Publications
	Chapter 5. Integration for Searching Publications
	5.1. To export metadata with OAI-PMH

	Chapter 6. Annexes
	6.1. Glossary
	6.2. AoU Modules

